Synthesis of SF₅CF₂-Containing Enones and Instability of This Group in Specific Chemical Environments and Reaction Conditions

Piotr Dudziński,^{†,§} Andrej V. Matsnev,[‡] Joseph S. Thrasher,[‡] and Günter Haufe^{*,†}

[†]Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, D-48149 Münster, Germany [§]International Graduate School of Chemistry, University of Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster, Germany [‡]Department of Chemistry, Advanced Materials Research Laboratory, Clemson University, 91 Technology Drive, Anderson, South Carolina 29625, United States

Supporting Information

ABSTRACT: The chemistry of the SF_5CF_2 moiety has been scarcely investigated. In this report, we present synthetic pathways to a variety of SF_5CF_2 -substituted compounds starting from vinyl ethers and $SF_5CF_2C(O)Cl$. In specific chemical environments and under particular reaction conditions, the SF_5CF_2 moiety is unstable in downstream products resulting in the elimination of the SF_5^- anion and its decomposition to SF_4 and F^- . Surprisingly, the formed F^- can attack the intermediate difluorovinyl moiety to form trifluoromethyl substituted products. This appears to happen when an intermediate neighboring group participation involving a double bond is possible. Under slightly different conditions, the reaction stops at the stage of a difluorovinyl compound.

■ INTRODUCTION

The chemistry of the SF₅ group has been well explored, and a variety of compounds have been synthesized, especially aromatic derivatives.¹ Fewer examples exist on the synthesis and application of aliphatic SF₅ compounds as building blocks,² and only rare examples were reported where the SF₅ group is a leaving group. The examples we found in the literature involved the elimination of the SF₅ group under basic conditions³ or its nucleophilic displacement by azide or formate, respectively.⁴ Moreover, the addition of SF₅Cl to ethyl $\beta_{\beta}\beta_{\beta}$ -diethoxyacrylate resulted in the formation of diethyl chloromalonate. Sulfur tetrafluoride, SF₄, and EtF were detected with ¹⁹F NMR spectroscopy giving evidence that the SF₅ group was probably incorporated in the β -position and then eliminated to give rise to SF₄ and F^{-.5a} Recently, Jubault, Bouillon et al. observed similar behavior (elimination of SF5-, decomposition, and fluoride addition) in the syntheses of isoxazolidines, ^{5b} and Beier et al. reported on the mild hydrolysis of the SF₅ group by water at room temperature.^{5c} Previously, both an SF_5 -containing carbanion and a nitrogen-based anion have been shown to eliminate SF₅⁻, and both reactions resulted in crystal structure determinations of the SF₅⁻ anion, whereby in the latter case SF₅⁻ was stabilized and protected from further decomposition to SF₄ and F⁻ by a bulky cation, namely Cs(18-crown-6)₂^{+,5d,e}

We recently published syntheses of SF₅CF₂C(O)OH and reactions of the corresponding acid chloride with amines and alcohols.⁶ In order to further assess the utility of the acid in the preparation of more complex building blocks, we applied reactions of enol ethers 1 with $SF_5CF_2C(O)Cl$ as a starting point in further transformations. Friedel-Crafts-type acylations of ordinary alkenes using acyl chlorides or anhydrides with different Lewis acid catalysts are very well-known in the literature.7 In addition, a series of trifluoroacetylations of electron-rich alkenes such as vinyl ethers and vinyl thioethers using trifluoroacetic anhydride have been reported.⁸ In reactions with electron-deficient alkenes or arenes, decarbonylation of the acid chloride can occur as a competing process resulting in trifluoromethylation of the substrates.⁹ In contrast, in the presence of particular Lewis acids, perfluoroacylation of ordinary alkenes becomes possible.¹⁰ Our present study on reactions of $SF_5CF_2C(O)Cl$ with vinyl ethers revealed unexpected chemical behavior of the SF₅CF₂ group in the downstream products in specific structural environments and under particular reaction conditions leading to several undesired and foremost unexpected products initiated by elimination of the SF₅ group. This report might prove to be

Received:
 March 14, 2016

 Published:
 May 9, 2016

useful to other researchers attempting to introduce this interesting moiety into organic molecules as well as broaden our understanding of the chemistry of SF₅-containing structural motifs. This type of decomposition is not common for the analogous CF₃CF₂ substituent since CF₃ is not a leaving group. To the best of our knowledge, only one example (under forced conditions) has been mentioned in the literature: pyrolysis of di- α -pentafluoroethylbenzyl oxalate, via homolytic β scission, gave almost exclusively $\beta_{\beta}\beta$ -difluorostyrene in addition to trace amounts of high boiling components.¹¹

RESULTS AND DISCUSSION

Compound $SF_5CF_2C(O)Cl$ was generated from the acid⁶ with oxalyl chloride and reacted in situ with various vinyl ethers (1, $R^3 = Me$, Et) in the presence of pyridine to give compounds **2a–g** in moderate to good yields (Scheme 1).

Scheme 1. Reactions of Vinyl Ethers (1, $R^3 = Me$, Et) with $SF_5CF_2C(O)Cl$ in the Presence of Pyridine

We focused our attention on compounds 2a, 2f, and 2g in our further studies aiming to synthesize SF_5CF_2 -substituted allylic alcohols 8, which might be useful for [3,3]sigmatropic rearrangements.¹² Initially, we used compound 2a, which after several transformations led to 7a (Scheme 2).

After liberation of the aldehyde, different allylic alcohols 8 should be available via Grignard reactions (dashed arrows). First, 2a was transformed to the cyclic acetal 3a by reaction with ethylene glycol. Subsequently, the carbonyl group of 3a was reduced with NaBH₄ to form 4a, which would then be

Scheme 2. Initial Attempts Aiming To Synthesize Allylic Alcohols 8^{a}

^aReaction conditions: (a) ethylene glycol, *p*-TsOH, PhMe; (b) NaBH₄, MeOH; (c) MsCl/Et₃N, CH₂Cl₂; (d) DBU, CH₂Cl₂, (e) P_2O_5 , CH₂Cl₂.

dehydrated by conversion of the OH into a mesylate **5a** and its subsequent elimination with a base. Surprisingly, under these conditions, the SF₅ group was eliminated to give **6a** in 79% yield. Dehydration of **4a** under acidic conditions (P_2O_5), on the other hand, gave the desired product **7a**, but its high volatility limited the isolated yield to 20%. Presumably, after deprotection the aldehyde would be even more challenging to isolate. Therefore, we did not proceed further in this direction.

Instead, we changed our strategy and used compounds 2f and 2g where the R^2 substituent is present in the starting enol ether already and thus avoided highly volatile intermediates. As a model starting material, 2f, which was prepared from 2-methoxypropene by reaction with $SF_5CF_2C(O)Cl$, was reduced to give 9f as a crude product. After structural elucidation, the crude 9f was hydrolyzed under acidic conditions to give the aldol 10f, which was treated with $MsCl/Et_3N$ to provide the crucial intermediate 11f (via the corresponding mesylate, not shown) (Scheme 3).

Scheme 3. Synthesis of β -SF₅CF₂-Substituted α_{β} -Unsaturated Ketones 11^{*a*}

^aReaction conditions: (a) NaBH₄, MeOH; (b) 2 M HCl, acetone (1:3); (c) MsCl/Et₃N, CH₂Cl₂ for $10f_{1}$; (d) P₂O₅, CH₂Cl₂ for $10g_{2}$.

It is noteworthy that comparison of the outcome of treatments of 4a and 10f with MsCl and an organic base proved the significant influence of different pK_a values of the C2 hydrogen atoms caused by the lack/presence of an activating carbonyl group. In contrast to the 10f to 11f transformation, a 2-fold excess of Et₃N was not sufficient to eliminate mesylate from 5a in a one-pot reaction sequence. Therefore, DBU was used for this purpose as a separate step.

Subsequently, 11f has been treated with $NaBH_4$ (0.6 equiv) in the presence of $CeCl_3 \cdot 7H_2O$ (1.0 equiv) in order to reduce the carbonyl group and to form the allylic alcohol 8f. To our surprise, the formed product did not contain an SF5 group anymore. The analysis of the crude reaction mixture with ¹⁹F NMR spectroscopy strongly suggested formation of a CF₃ compound. This product, however, was difficult to isolate in reasonable yield. Therefore, the longer chain homologue 2g, available from 2-methoxydec-1-ene and $SF_5CF_2C(O)Cl$, was used as the starting material in order to decrease the volatility of the final product. In this case, however, a partial formation of the CF₃ compound 11g' occurred during synthesis of 11g (19 F NMR spectrum, Figure 1). When $MsCl/Et_3N$ or P_2O_5 was used for dehydration of 10g, 2:1 and 3:1 mixtures of the desired 11g and 11g' were formed. When the reaction of 10g with P_2O_5 in DCM was controlled by TLC and stopped immediately when all 10g was consumed, the formation of 11g' was prevented almost completely. The desired 11g was isolated in 72% yield, and only a negligible amount of the undesired side product

Figure 1. Selected ${}^{1}H{}^{19}F$ NMR data of the starting material 11g with a characteristic quintet of multiplets belonging to the difluoromethylene group (negative part, with impurity of the CF3 compound 11g'), reductively trapped intermediate 13g, and the undesired substitution product 12g.

11g' was detected (the bottom ¹⁹F NMR spectrum in Figure 1, signal at $\delta = -65.4$ ppm).

Having 11g in hand, it was reacted with 0.6 equiv of NaBH₄ in the presence of 1 equiv of CeCl₃·7H₂O in methanol in order to obtain 8g. However, instead of the desired 8g, the CF3substituted allylic alcohol 12g was isolated with 78% yield (Scheme 4, Figure 1). The same result (58% yield) was observed when 0.6 equiv of LAH in diethyl ether was used as a reducing agent. In addition, the Meerwein-Ponndorf-Verley reduction was applied with similar results (5% yield of 12g, see the Experimental Section for details). It is worth mentioning that reduction of the CF₃-containing analogue of compound 11f under these conditions led to the allylic alcohol 12f, while application of LAH in diethyl ether gave 5,5-difluoropent-4-en-2-ol (13f, R = Me).¹³ We concluded that the basic conditions of those reactions caused the elimination of the SF5 group. Therefore, our attention turned to acidic conditions, and NaCNBH₃ in methanol/HCl was used as the reducing agent, unfortunately giving the same undesired product 12g (23% yield). These examples led us to consider that an epoxide might be involved in the formation of 12g (Scheme 4).

We hypothesized that the formed alcoholate group (8g) attacks the vicinal sp² carbon atom, followed by double-bond migration and elimination of the SF₅⁻ group (A). The formed intermediate difluorovinyl oxirane reacts further with fluoride anion (B) (presumably formed by decomposition of SF₅⁻ to SF₄ and F⁻) in an S_N2' fashion forming the CF₃ group, and the original double bond along with the hydroxyl group are recovered after quenching with a water solution to give 12g. This uncommon mechanism¹⁴ has been supported by using an excess of LAH in order to outcompete the fluoride anion by

Scheme 4. Proposed Mechanism of the Formation of 12g (Top) and Experimental Support for the Assumed Formation of an Intermediate Epoxide Leading to 13g with Excess LAH (Bottom)^{*a*}

^{*a*}[H] = (1) NaBH₄/CeCl₃/MeOH (**12g**, 78%); or (2) LAH (0.6 equiv)/Et₂O (**12g**, **13g** 5:1, 58%); or (3) Al(*i*PrO)₃/*i*PrOH (**12g**, **11g**' 1:1, 10%^{b,c}); or (4) NaBH₃CN/MeOH/HCl (**12g**, 23%, **13g**, 4%^b). Key: (b) by ¹⁹F NMR, (c) by a different mechanism; see the explanation in the procedure in the Experimental Section.

hydride, which opens the assumed intermediate epoxide in an S_N^2 reaction (C) to give 13g in 75% yield.

Figure 1 depicts (from bottom to top) selected spectral data of the starting material 11g, reductively trapped intermediate 13g, and the undesired product 12g.

We also carried out the reduction of 11g with LiBH₄ in the presence of excess TMSCl in THF in order to trap the fluoride

anion and to stop the reaction at the epoxide stage. Under these conditions, the epoxide was not found; however, substantial amounts of TMSF were detected by ¹⁹F NMR spectroscopy alongside with several unidentified fluorinated products. Furthermore, our attempts to open the anticipated intermediate epoxide selectively by hydride in an S_N2' fashion using bulkier DIBALH was not successful and gave a 1:1 mixture of **12g** and **13g**. The DIBALH reduction in the presence of excess NaI in order to trap the epoxide (intermediate B) with iodide did not give the difluoroiodo analogue of **23**, but the homoallylic alcohol **13g** was formed exclusively.

In order to study the role of the difluoromethylene group of **11g** in all of these reactions, we prepared the methylene analogue **17** following the designed strategy (Scheme 1) using 2-methoxypropene and $SF_5CH_2C(O)Cl^{12,13b}$ as starting materials. Thus, enone **17**, prepared from the substitution product **14** analogously to the pathway shown in Scheme 3, was subjected to the same reduction conditions using NaBH₄ to give the SF₅CH₂-substituted allylic alcohol **18** in 90% yield (Scheme 5).

^{*a*}Conditions: (a) NaBH₄/CeCl₃/MeOH; (b) LAH (5 equiv), THF.

Other SF₅-¹⁵ as well as ClCF₂-substituted¹⁶ allylic alcohols have been synthesized already under different basic conditions. For a direct comparison, nevertheless, compound 22 having the ClCF₂ group was prepared from 19 via 20 and 21 (see the Experimental Section) and, as it turned out, was successfully reduced to the corresponding allylic alcohol 23 in 81% isolated yield. However, elimination of chloride (via an epoxide) and its subsequent incorporation under these conditions is still possible. In order to prove whether such a process occurs, 22 has been treated with 5 equiv of LAH. The hydride opened the anticipated epoxide leading to 13g. Thus, the difluoromethylene group plays a critical role in our systems facilitating the elimination of the SF₅ group. However, the allylic system 8g shows similar properties to 23 in which elimination of the terminal substituent occurs. These processes are followed by reincorporation of the leaving group (Cl⁻) or its decomposition products (F^- from SF_5^-) to the system (when no competing nucleophile is present).

Finally, we decided to test whether the nucleophilicity of the alcoholate (formed during reduction of 11g) can be diminished by the inductive effect of a neighboring electron-withdrawing substituent. Hence, analogously to a recently published

protocol for β -ethoxyvinyl polyfluoroalkyl ketones,¹⁷ **2f** was reacted with bromine to give **24**. Then, following the previously used reduction/hydrolysis sequence (Scheme 3), compound **26** was synthesized. Its dehydration with P₂O₅ gave, in addition to the desired **27**, a minor amount of the CF₃-substituted **27**' already in an inseparable 18:1 mixture (Scheme 6). This

Scheme 6. β -Fluoroalkylated $\alpha_{,\beta}$ -Unsaturated α' -Bromo Ketones^a

"Reaction conditions: (a) Br_2 , CH_2Cl_2 ; (b) $NaBH_4$, MeOH; (c) 2 M HCl, acetone (1:2), reflux; (d) P_2O_5 , CH_2Cl_2 , (1) 18:1 with CF_3 analogue; (e) $NaBH_4$, $CeCl_3$ ·7H₂O, MeOH, (2) 12:1 with CF_3 analogue.

mixture was subjected to the previously used reduction conditions. As we hoped, in this case the SF_5CF_2 -substituted allylic alcohol was formed as a final product in 59% yield with minor erosion of the initial ratio of SF_5CF_2 and CF_3 products (from 18:1 in 27:27' to 12:1 in 28:28'). Similar results were obtained for the long-chain analogue; see the Experimental Section.

CONCLUSIONS

We used $SF_5CF_2C(O)OH$ as a starting material for the preparation of new SF₅CF₂-substituted alkoxyvinyl ketones 2 by reaction of the corresponding acid chloride with vinyl ethers 1 in the presence of pyridine. Subsequent to reduction of the keto group, hydrolysis of the vinyl ether moiety formed an aldol 9. Its careful dehydration with P_2O_5 or by treatment of an in situ formed mesylate with base delivered β -SF₅CF₂-substituted, α_{β} -unsaturated ketones 11. All our attempts to reduce the carbonyl group of 11 retaining the SF₅CF₂ group failed and delivered secondary products such as CF3-substituted allylic alcohols 12 formed by elimination of the SF5 group and refluorination of intermediate terminal difluorovinyl structures. The corresponding homoallylic alcohol 13 could be isolated when an excess of the reducing agent was used. In addition to the literature examples of SF₅ group elimination under basic conditions mentioned in the introduction, $^{3-5}$ and SF₅ elimination from 5a and 11 with a base, this seems to be also an intrinsic behavior of the SF5CF2 moiety of 11 under reducing conditions. In contrast the SF₅CH₂ and ClCF₂ analogues 17 or 22, respectively, were reduced as expected under the same reaction conditions. Reducing the nucleophilicity of the intermediate alcoholate by a bromine substituent drastically reduced the elimination of the SF₅ group from 27 during reduction to 28. Hence, this report might provide useful information for chemists interested in the introduction of the SF_5CF_2 group into organic molecules.

EXPERIMENTAL SECTION

General Experimental Methods. ¹H NMR spectra were recorded at room temperature at 300 or 400 MHz. ¹³C and ¹⁹F NMR spectra were likewise recorded at 75 or 100 and 282 MHz, respectively. The spectra were calibrated with CDCl₂ (7.26 and 77.16 ppm for ¹H and ¹³C, respectively) with respect to TMS (¹H and ¹³C NMR) and CCl₃F (¹⁹F NMR) as internal standards. In the ¹⁹F NMR spectra, the SF₅ group gives an AB₄ spin system caused by the axial and equatorial fluorine atoms; when the chemical shifts of A and B are relatively close to each other, one might see an asymmetric nine-line pattern for the A fluorine atom, which we call a nonet. Mass spectra (ESI-MS) were measured with a MicroTof Mass spectrometer (the measured ions were produced mostly by addition of Na cations and are reported as $[M + Na]^+$ ions). In some cases, GC/MS was used (conditions -30 m HP5 column, 50 °C for 2 min, 15 °C/min to 300 °C). GC-MS (EI⁺ scan) spectra were measured with a Micromass apparatus, while atmospheric pressure chemical ionization (APCI) mass spectra were recorded on an Orbitap instrument with loop injection. TLC plates (silica gel 60 F254) were used for thin-layer chromatography (dipping the developed plate in an aqueous KMnO₄ solution followed by heating was used for visualization). Column chromatography was carried out on silica gel 60 (particle size 0.040-0.063 mm). All reactions requiring dry conditions were carried out in glassware that was either oven-dried or prepared by Schlenk techniques under argon atmosphere. Dry DCM was distilled from CaH₂; methanol, acetone, toluene were used as received from commercial suppliers; ethanol was used in its absolute form. All reagents were commercially obtained unless otherwise stated.

Typical Procedure for Synthesis of the Enones 2a–g. Under argon atmosphere, to a stirred solution of $SF_5CF_2C(O)OH$ in dry DCM was added a catalytic amount of DMF followed by oxalyl chloride at 0 °C. The cooling bath was removed, and when the bubbling ceased (approximately 4 h), a solution of pyridine and the enol ether in DCM was added at 0 °C. Stirring was continued for several hours. Then, silica was poured to the reaction mixture and solvents were removed in vacuum. This material was worked up by column chromatography (pentane/Et₂O, either 10:1 or 20:1).

(E)-4-Ethoxy-1,1-difluoro-1-(pentafluoro-λ⁶-sulfanyl)but-3-en-2one (**2a**). SF₃CF₂C(O)OH (832 mg, 3.75 mmol), oxalyl chloride (800 μL, 9.40 mmol), ethyl vinyl ether **1a** (810 mg, 11.25 mmol), and pyridine (1.5 mL, 18.75 mmol) gave **2a** as a colorless oil after column chromatography (pentane/Et₂O, 10:1). Yield: 668 mg (65%). ¹H NMR (300 MHz, CDCl₃): δ 7.91 (d, ³J_{H,H} = 12.1 Hz, 1H), 5.93 (dt, ³J_{H,H} = 12.2 Hz, ⁴J_{H,F} = 1.7 Hz, 1H), 4.11 (q, ³J_{H,H} = 7.0 Hz, 2H), 1.40 (t, ³J_{H,H} = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 180.6 (t, ²J_{C,F} = 24.4 Hz), 168.4, 120.7 (t, ¹J_{C,F} = 309.8 Hz), 98.1, 69.5, 14.5. ¹⁹F NMR (282 MHz, CDCl₃): δ 67.42 (quintm, ²J_{F,F} = 146.4 Hz, 1F), 42.73 (dt, ²J_{F,F} = 146.4, ³J_{F,F} = 12.5 Hz, 4F), -92.92 (quintdd, ³J_{F,F} = 12.5, ³J_{F,F} = 4.5, ⁴J_{H,F} = 1.6 Hz, 2F). GC/MS: *m*/*z* (rel int, ion): 276 (100, M⁺), 261 (10, M⁺ - Me), 71 (100, CH = CHOEt⁺), 127 (2, SF₅⁺), 99 (85, M⁺ - SF₅CF₂) 89 (15, SF₃⁺). APCI MS: *m*/*z* (rel abund, ion) [FTMS⁺] calcd 277.0133, found 277.0127 (100, C₆H₇F₇O₂SH⁺).

4-Ethoxy-1,1-difluoro-3-methyl-1-(pentafluoro-λ⁶-sulfanyl)but-3en-2-one (**2b**). The carboxylic acid SF₅CF₂C(O)OH (316 mg, 1.42 mmol), oxalyl chloride (192 μL, 2.27 mmol), ethyl-1-propenyl ether **1b** (245 mg, 2.84 mmol), and pyridine (226 μL, 2.84 mmol) gave **2b** as a colorless oil after column chromatography (pentane/Et₂O, 10:1). Yield: 196 mg (47%). ¹H NMR (300 MHz, CDCl₃): δ 7.68 (s, 1H), 4.21 (q, ³J_{H,H} = 7.1 Hz, 2H), 1.81 (s, 3H), 1.39 (t, ³J_{H,H} = 7.1 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 180.4 (t, ²J_{C,F} = 23.0 Hz), 164.6 (t, ³J_{C,F} = 8.7 Hz), 121.6 (t, ¹J_{C,F} = 302.2 Hz), 113.8, 71.8, 15.4, 8.9. ¹⁹F NMR (282 MHz, CDCl₃): δ 68.32 (quintm, ²J_{F,F} = 146.0 Hz, 1F), 41.50 (dt, ²J_{F,F} = 145.9, ³J_{F,F} = 11.3 Hz, 4F), -84.53 (quintd, ³J_{F,F} = 11.5, ³J_{F,F} = 4.5 Hz, 2F). ESI MS (C₇H₉F₇O₂SNa): calcd 313.0109, found 313.0104.

3-(Ethoxymethylene)-1,1-difluoro-1-(pentafluoro- λ^6 -sulfanyl)pentan-2-one (**2c**). The compound SF₅CF₂C(O)OH (237 mg, 1.07 mmol), oxalyl chloride (225 μ L, 2.67 mmol), 1-butenyl ethyl ether **1c** (321 mg, 3.21 mmol), and pyridine (412 μ L, 5.35 mmol) gave 2c as a colorless oil after column chromatography (pentane/Et₂O, 10:1). Yield: 190 mg (63%). ¹H NMR (300 MHz, CDCl₃): δ 7.65 (s, 1H), 4.20 (q, ³J_{H,H} = 7.1 Hz, 2H), 2.34 (q, ³J_{H,H} = 7.4 Hz, 2H), 1.38 (t, ³J_{H,H} = 7.1 Hz, 2H), 0.93 (t, ³J_{H,H} = 7.4 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 179.8 (t, ²J_{C,F} = 22.1 Hz), 164.6, 121.9 (ttd, ¹J_{C,F} = 309.0, J_{C,F} = 21.0, J_{C,F} = 1.5 Hz) 120.4, 71.9, 17.2, 15.4, 12.4. ¹⁹F NMR (282 MHz, CDCl₃): δ 66.03 (quintm, ²J_{F,F} = 145.9 Hz, 1F), 41.50 (dt, ²J_{F,F} = 145.9, ³J_{F,F} = 11.5 Hz, 4F), -84.25 (quintd, ³J_{F,F} = 11.5, ³J_{F,F} = 4.5 Hz, 2F). ESI MS (C₈H₁₁F₇O₂SNa): calcd 327.0266, found 327.0260, [(C₈H₁₁F₇O₂S)₃Na] calcd 631.0634, found 631.0628.

1-(4,5-Dihydrofuran-3-yl)-2,2-difluoro-2-(pentafluoro-λ⁶-sulfanyl)ethan-1-one (**2d**). The carboxylic acid SF₅CF₂C(O)OH (238 mg, 1.07 mmol), oxalyl chloride (230 μL, 2.70 mmol), 2,3-dihydrofuran **1d** (224 mg, 3.21 mmol), and pyridine (430 μL, 5.35 mmol) gave **2d** as a yellow oil after column chromatography (pentane/Et₂O, 10:1). Yield: 160 mg (55%). ¹H NMR (300 MHz, CDCl₃): δ 7.67 (s, 1H), 4.66 (t, ³J_{H,H} = 9.8 Hz, 2H), 2.97 (t, ³J_{H,H} = 9.8 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 176.3 (t, ²J_{C,F} = 24.9 Hz), 164.0 (t, ³J_{C,F} = 9.1 Hz), 120.8 (tm, ¹J_{C,F} = 309.5 Hz), 115.4, 73.9, 27.6. ¹⁹F NMR (282 MHz, CDCl₃): δ 67.43 (quint, ³J_{F,F} = 146.6 Hz, 1F), 41.77 (dm, ²J_{F,F} = 146.6 Hz, 4F), -88.83 (quint, ³J_{F,F} = 11.5 Hz, 2F). ESI MS (C₆H₅F₇O₂SNa): calcd 296.9796, found 296.9791.

1-(3,4-Dihydro-2H-pyran-5-yl)-2,2-difluoro-2-(pentafluoro-λ⁶-sulfanyl)ethan-1-one (**2e**). The carboxylic acid SF₃CF₂C(O)OH (249 mg, 1.12 mmol), oxalyl chloride (240 μL, 2.80 mmol), 3,4-dihydro-2H-pyran **1e** (282 mg, 3.36 mmol), and pyridine (450 μL, 5.60 mmol) gave **2e** as a colorless oil after column chromatography (pentane/Et₂O, 20:1). Yield: 170 mg (53%). ¹H NMR (300 MHz, CDCl₃): δ 7.93 (s, 1H), 4.22–4.13 (m, 2H), 2.32 (t, ³J_{H,H} = 6.4 Hz, 2H), 1.95 (quint, ³J_{H,H} = 6.0 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 179.7 (t, ²J_{C,F} = 23.6 Hz), 162.7 (t, ³J_{C,F} = 10.0 Hz), 121.4 (ttd, ¹J_{C,F} = 307.5, ²J_{C,F} = 22.5, ³J_{C,F} = 2.3 Hz), 113.1, 67.9, 20.7, 18.8. ¹⁹F NMR (282 MHz, CDCl₃): δ 67.68 (quintm, ²J_{F,F} = 146.3 Hz, 1F), 41.53 (dt, ²J_{F,F} = 146.3, ³J_{F,F} = 11.5 Hz, 4F), -85.26 (quintd, ³J_{F,F} = 11.4, ³J_{F,F} = 4.3 Hz, 2F. ESI MS (C₇H₇F₇O₂SNa): calcd 310.9953, found 310.9947.

1,1-Difluoro-4-methoxy-1-(pentafluoro-λ⁶-sulfanyl)pent-3-en-2one (**2f**). The carboxylic acid SF₅CF₂C(O)OH (1.41 g, 6.36 mmol), oxalyl chloride (1.35 mL, 15.89 mmol), methoxypropene **1f** (1.37 g, 19.08 mmol), and pyridine (2.54 mL, 31.8 mmol) gave **2f** as a pale yellow oil after column chromatography (pentane/Et₂O, 10:1). Yield: 1.37 g (79%). ¹H NMR (300 MHz, CDCl₃): δ 5.74 (s, 1H), 3.80 (s, 3H), 2.40 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 182.1, 179.1 (t, ²J_{C,F} = 22.6 Hz), 120.8 (tm, ¹J_{C,F} = 309.8 Hz), 92.2, 56.7, 21.3. ¹⁹F NMR (282 MHz, CDCl₃): δ 67.49 (quintt, ²J_{F,F} = 146.0, ³J_{F,F} = 4.7 Hz, 1F), 42.11 (dt, ²J_{F,F} = 146.0, ³J_{F,F} = 12.7 Hz, 4F), -92.48 (quintdd, ³J_{F,F} = 12.7, ³J_{F,F} = 4.6, J_{H,F} = 1.6 Hz, 2F). ESI MS (C₆H₇F₇O₂SNa): calcd 298.9953, found 298.9947.

1,1-Difluoro-4-methoxy-1-(pentafluoro-λ⁶-sulfanyl)dodec-3-en-2-one (**2g**). The carboxylic acid SF₅CF₂C(O)OH (213 mg, 0.96 mmol), oxalyl chloride (200 μL, 2.40 mmol), the methyl vinyl ether **1g**¹⁸ (350 mg, 2.05 mmol), and pyridine (380 μL, 4.80 mmol) gave **2g** as a yellow oil after column chromatography (pentane). Yield: 267 mg (74%). ¹H NMR (300 MHz, CDCl₃): δ 5.69 (s, 1H), 3.79 (s, 3H), 2.80–2.73 (m, 2H), 1.53 (quint, ³J_{H,H} = 7.3 Hz, 2H) 1.42–1.18 (m, 10H), 0.87 (t, ³J_{H,H} = 6.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 186.1, 178.6 (t, ²J_{C,F} = 22.1 Hz), 121.1 (t, ¹J_{C,F} = 292.0 Hz), 91.6, 56.7, 34.2, 31.9, 29.5, 29.3, 29.3, 26.9, 22.8, 14.2. ¹⁹F NMR (282 MHz, CDCl₃): δ 68.0 (quint, ²J_{F,F} = 146.2, 1F), 42.5 (dt, ²J_{F,F} = 146.2, ³J_{F,F} = 10.9 Hz, 4F), -92.0 (quint, ³J_{F,F} = 12.6 Hz, 2F). ESI MS (C₁₃H₂₁F₇O₂SNa): calcd 397.1048, found 397.1049.

Attempted Synthesis of the Allylic Alcohols 8 Starting from 2a. 3-(1,3-Dioxolan-2-yl)-1,1-difluoro-1-(pentafluoro- λ^6 -sulfanyl)propan-2-one (3a). Compound 2a (409 mg, 1.48 mmol) was dissolved in toluene (8 mL). Ethylene glycol (637 mg, 5.92 mmol) and p-TsOH (57 mg, 0.30 mmol) were added, and the mixture was refluxed for 6 h. After the completion of the reaction (TLC analysis), the mixture was diluted with water (25 mL) and extracted with DCM (3 × 20 mL), and the combined organic phases were washed with brine (50 mL). After being dried with Na₂SO₄ and concentrated under vacuum, the obtained crude product was purified by column chromatography (pentane/Et₂O, 15:1) to afford **3a** as a colorless oil. Yield: 208 mg (48%). ¹H NMR (300 MHz, CDCl₃): δ 5.37 (t, ³J_{H,H} = 4.8 Hz, 1H), 4.04–3.96 (m, 2H), 3.96–3.89 (m, 2H), 3.14 (d, ³J_{H,H} = 4.8 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 188.1 (t, ²J_{C,F} = 25.7 Hz), 119.4 (t, ¹J_{C,F} = 300 Hz), 99.3, 65.1, 42.5–42.0 (m). ¹⁹F NMR (282 MHz, CDCl₃): δ 68.0 (quintt, ²J_{F,F} = 146.3 Hz, ³J_{F,F} = 4.0 Hz, 1F), 43.8 (dt, ²J_{F,F} = 146.3, ³J_{F,F} = 11.9 Hz, 4F), -93.7 (quintd, ³J_{F,F} = 11.9, ³J_{F,F} = 4.0 Hz, 2F). ESI MS (C₆H₇F₇O₃SNa): calcd 314. 9902, found 314.9900.

3-(1,3-Dioxolan-2-yl)-1,1-difluoro-1-(pentafluoro-λ⁶-sulfanyl)propan-2-ol (**4a**). Compound **3a** (208 mg, 0.71 mmol) was dissolved in EtOH (8 mL). At 0 °C, NaBH₄ (22 mg, 0.57 mmol) was added, and stirring was continued for 30 min at that temperature. After being quenched with 1 M HCl (20 mL), the reaction mixture was extracted with DCM (3 × 20 mL), washed with brine (50 mL), dried over MgSO₄, and concentrated. The crude product was purified by column chromatography (pentane/Et₂O, 4:1) to afford **4a** as a yellow oil. Yield: 183 mg (88%). ¹H NMR (300 MHz, CDCl₃): δ 5.14 (t, ³*J*_{H,H} = 4.3 Hz, 1H), 4.54 (ddt, ³*J*_{H,F} = 17.0, ³*J*_{H,F} = 8.0, ³*J*_{H,H} = 4.8 Hz, 1H), 4.03–3.91 (m, 2H), 3.91–3.79 (m, 2H), 3.49 (bs, 1H), 2.16–2.09 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 128.9 (t, ¹*J*_{C,F} = 307 Hz), 101.8, 69.1–68.2 (m), 65.1 and 64.9, 33.7. ¹⁹F NMR (282 MHz, CDCl₃): δ 69.8 (quintm, ²*J*_{F,F} = 146.8 Hz, 1F), 40.46 (dt, ²*J*_{F,F} = 146.8, ³*J*_{F,F} = 16.0 Hz, 4F), -89.3 and -95.1 (ABX₄ spin system, *J*_{AB} = 189, ³*J*_{F,F} = 16.0 Hz, 2F). ESI MS (C₆H₉F₇O₃SNa): calcd 317.0058, found 317.0053.

3-(1,3-Dioxolan-2-vl)-1,1-difluoro-1-(pentafluoro- λ^6 -sulfanvl)propan-2-yl Methanesulfonate (5a). Mesyl chloride (23 mg, 0.20 mmol) was added to a solution of the alcohol 4a (45 mg, 0.15 mmol) and TEA (30 mg, 0.30 mmol) in dry DCM (5 mL) at 0 °C, and the reaction mixture was allowed to reach room temperature. After 2 h, the reaction was quenched with water, and the reaction mixture was extracted with DCM (3×8 mL). The combined organic phases were dried over MgSO4 and concentrated. The crude product was purified by column chromatography (pentane/Et₂O, 4:1) to give 5a as yellow oil. Yield: 42 mg (75%). ¹H NMR (300 MHz, CDCl₃): δ 5.52-5.37 (m, 1H), 5.08 (dd, ${}^{3}J_{H.H} = 4.7$, ${}^{3}J_{H.H} = 3.2$ Hz, 1H), 4.03–3.92 (m, 2H), 3.91-3.80 (m, 2H), 3.09 (s, 3H), 2.38-2.27 (m, 1H), 2.27-2.18 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 127.1 (tm, ¹ $J_{C,F}$ = 303.7 Hz), 100.2, 74.5 (t, ${}^{2}J_{C,F}$ = 24.1 Hz), 65.3 and 65.0, 39.3, 33.2. ${}^{19}F$ NMR (282 MHz, CDCl₃): δ 68.39 (quintm, ${}^{2}J_{F,F}$ = 146.0 Hz, 1F), 42.57 (dt, ${}^{2}J_{F,F} = 146.1$, ${}^{3}J_{F,F} = 14.4$ Hz, 4F), AB spin system, $J_{AB} = 194$ Hz, -86.72 (quintd, ${}^{3}J_{F,F} = 14.9$, ${}^{3}J_{F,F} = 4.9$ Hz, 1F and -89.62 (m, 1F). GC/MS: *m*/*z* (rel int, ion): 371 (<1, M⁺ – H), 277 (<1, M⁺ - MsO), 293 (<1, M^+ – Ms), 89 (10, SF_3^+), 79 (20, Ms^+), 73 (100, $C_3H_5O_2^+$). ESI MS (C₇H₁₁F₇O₅S₂Na): calcd 394.9834, found 394.9828.

3-(1,3-Dioxolan-2-yl)-1,1-difluoroprop-1-en-2-yl Methanesulfonate (**6a**). Compound **5a** (52 mg, 0.14 mmol) was treated with DBU (25 mg, 0.17 mmol) in DCM (2 mL). After 1 h, the reaction was quenched with water (5 mL) and extracted with DCM (3 × 5 mL). The DCM extract was washed with brine (10 mL), dried over MgSO₄, concentrated, and purified by column chromatography (pentane/Et₂O, 4:1) to give **6a** as a yellow oil. Yield: 27 mg (79%). ¹H NMR (300 MHz, CDCl₃): δ 5.12 (t, ³J_{H,H} = 4.5 Hz, 1H), 4.04–3.95 (m, 2H), 3.95–3.87 (m, 2H), 3.18 (s, 3H), 2.70 (ddd, ³J_{H,H} = 4.5, ⁴J_{H,F} = 3.7, ⁴J_{H,F} = 2.5 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 156.4 (dd, H, ¹J_{C,F} = 285.9, ¹J_{C,F} = 258.8 Hz), 109.2 (dd, H, ²J_{C,F} = 48.5, 16.6 Hz), 101.0 (t, H, ⁴J_{C,F} = 3.5 Hz), 65.1, 38.8 (⁵J_{C,F} = 2.2 Hz), 32.7 (d, H, ³J_{C,F} = 2.6 Hz). ¹⁹F NMR (282 MHz, CDCl₃): δ -92.2 (dt, ²J_{F,F} = 49.6, ⁴J_{H,F} = 3.6 Hz, 1F), -105.7 (dt, ²J_{F,F} = 49.6, ⁴J_{H,F} = 3.7 Hz, 1F). ESI MS (C₇H₁₀F₂O₅SNa): calcd 267.0115, found 267.0109.

(E)-2-[3,3-Difluoro-3-(pentafluoro- λ^6 -sulfanyl)prop-1-en-1-yl]-1,3-dioxolane (**7a**). Compound **4a** (40 mg, 0.14 mmol) was treated with P₂O₅ (57 mg, 0.40 mmol) in DCM (4 mL) overnight. Then the mixture was filtered and concentrated under atmospheric pressure to give **7a** (contaminated with trace amounts of several unidentified SF₅CF₂ compounds). Yield: 7 mg (20%), colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 6.42 (ddt, ³J_{H,H} = 15.7, J = 3.6, J = 1.8 Hz, 1H), 6.26–6.09 (m, 1H), 5.49 (dt, J = 3.3, J = 1.7 Hz, 1H), 3.98 (tt, J = 3.2, J = 1.6 Hz, 4H). ¹³C NMR (75 MHz, CDCl₃): δ 137.3 (t, ³J_{C,F} = 9.0 Hz, C3), 122.5 (t, ${}^{2}J_{C,F} = 21.0$ Hz), 100.3, 65.1. ${}^{19}F$ NMR (282 MHz, CDCl₃): δ 68.71 (quintm, ${}^{2}J_{F,F} = 144.4$ Hz, 1F), 37.79 (dt, ${}^{2}J_{F,F} = 144.5$, ${}^{3}J_{F,F} = 15.1$ Hz, 4H), -82.17 (dquintm, ${}^{3}J_{F,F} = 15.1$, ${}^{3}J_{F,F} = 5.0$ Hz 2F). GC/MS: m/z (rel int, ion) 276 (25, M⁺), 149 (25, M⁺ - SF₅), 89 (25, SF₃⁺), 73 (60, M⁺ - SF₅CF₂CH = CH). APCI MS: m/z (rel abund, ion) [FTMS⁻] calcd 126.9641, found 126.9639 (100, SF₅⁻), [FTMS⁺] calcd 274.9971, found 274.9966 (35, C₆H₆O₂SF₇⁺).

Attempted Synthesis of the Allylic Alcohols 8 Starting from **2f and 1g.** 5,5-Difluoro-4-hydroxy-5-(pentafluoro- λ^6 -sulfanyl)pentan-2-one (10f). Compound 2f (374 mg, 1.35 mmol) and NaBH₄ (26 mg, 0.68 mmol) were placed in MeOH (10 mL) at 0 °C. After 15 min, the reaction mixture was quenched with water and extracted with DCM (3 \times 30 mL). The DCM extract was then dried over MgSO₄ and concentrated. The resulting hydroxyl enol ether 9f (confirmed by NMR spectroscopy) was subsequently hydrolyzed by treatment with a 1:3 2 M HCl/acetone mixture (10 mL) for 12 h at room temperature. Column chromatography (pentane/Et₂O, 4:1) afforded 10f. Yield: 270 mg (91% over two steps). White solid. Mp: 70-71 °C. ¹H NMR (300 MHz, CDCl₃): 4.87-4.71 (m, 1H), 3.85 (bs, 1H), AB spin system: 2.94 (dd, ${}^{2}J_{H,H} = 17.8$, ${}^{3}J_{H,H} = 9.0$ Hz, 1H) and 2.83 (dt, ${}^{2}J_{H,H}$ = 17.8, ${}^{4}J_{H,F}$ = 2.3 Hz, 1H), 2.24 (s, 3H). ${}^{13}C$ NMR (75 MHz, CDCl_3): δ 206.1, 129.0 (tm, ${}^1J_{\text{C,F}}$ = 300.1 Hz), 69.9–66.0 (m), 43.6, 30.8. ¹⁹F NMR (282 MHz, CDCl₃): δ 69.56 (quintm, ² $J_{F,F}$ = 145.5 Hz, 1F), 40.5 (dt, ${}^{2}J_{F,F} = 145.5$, ${}^{3}J_{F,F} = 15.8$ Hz, 4F). AB spin system: -88.8 and -94.6 ($J_{AB} = 191$ Hz, 2F). ESI MS (C₅H₇F₇O₂SNa): calcd 286.9953, found 286.9947, [(C₅H₇F₇O₂S)₂Na] calcd 551.0008, found 551.0002.

1,1-Difluoro-2-hydroxy-1-(pentafluoro- λ^6 -sulfanyl)dodecan-4one (10g). Compound 2g (250 mg, 0.67 mmol) was treated with NaBH₄ (15 mg, 0.40 mmol) in MeOH (10 mL) at 0 °C for 15 min. The reaction mixture was quenched with water and extracted with DCM (3 \times 15 mL). The DCM extract was dried over MgSO₄ and concentrated. The resulting hydroxyl enol ether 9g was subsequently hydrolyzed by treatment with a 1:3 2 M HCl/acetone mixture (10 mL) overnight. Column chromatography (pentane/Et₂O, 10:1) afforded 10g as a yellow oil. Yield: 172 mg (71% over two steps). ¹H NMR (300 MHz, CDCl₃): δ 4.90–4.72 (m, 1H), 3.99 (bs, 1H), AB spin system: 2.91 (dd, ${}^{2}J_{H,H} = 17.6$, ${}^{3}J_{H,H} = 9.1$ Hz, 1H) and 2.71 $(dt, {}^{2}J_{H,H} = 17.6, {}^{4}J_{H,F} = 2.4 Hz, 1H), 2.48 (t, {}^{3}J_{H,H} = 7.4 Hz, 2H), 1.58$ (quint, ${}^{3}J_{H,H} = 7.2$ Hz, 2H), 1.26 (m, 10H), 0.87 (t, ${}^{3}J_{H,H} = 6.6$ Hz, 3H). ${}^{13}C$ NMR (75 MHz, CDCl₃): δ 208.6, 129.1 (t, ${}^{1}J_{C,F} = 303.6$ Hz), 68.6-67.4 (m), 43.9, 42.7, 31.9, 29.4, 29.2, 29.2, 23.6, 22.8, 14.2. ¹⁹F NMR (282 MHz, CDCl₃): δ 68.0 (quintm, ² $J_{F,F}$ = 146.2, 1F), 42.5 (dt, ${}^{2}J_{F,F}$ = 146.2, ${}^{3}J_{F,F}$ = 10.9 Hz, 4F), AB spin system: -88.8 and -94.4 ($J_{AB} = 190$ Hz, 2F). ESI MS ($C_{12}H_{21}F_7O_2SN_a$): calcd 385.1048, found 385.1043.

(E)-5,5-Difluoro-5-(pentafluoro- λ^6 -sulfanyl)pent-3-en-2-one (11f). To a solution of the alcohol 10f (650 mg, 2.46 mmol) in dry DCM (25 mL) was added TEA (497 mg, 4.92 mmol) followed by MsCl (336 mg, 2.95 mmol) at 0 °C. The reaction mixture was stirred for 30 min. It was then quenched with water (50 mL) and extracted with DCM (3 \times 30 mL). The organic phase was dried over MgSO₄. Careful removal of solvents and filtration through a short silica pad afforded 11f. Yield: 250 mg (41%). Volatile yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 6.81–6.70 (m, 2H), 2.39 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 195.1 (C4), 135.4 (t, ${}^{3}J_{C,F}$ = 7.5 Hz), 130.3 (t, ${}^{2}J_{C,F}$ = 22.6 Hz), 126.4 (${}^{1}J_{C,F}$ = 296.6 Hz), 28.7. ${}^{19}F$ NMR (282 MHz, CDCl₃): δ 67.7 (quintm, ² J_{EF} = 145.3 Hz, 1F), 38.7 (dtd, ² J_{EF} = 145.3, ${}^{3}J_{\text{F,F}} = 14.5, J = 1.5 \text{ Hz}, 4\text{F}), -83.41 \text{ (quintdd, } {}^{3}J_{\text{F,F}} = 14.5, {}^{3}J_{\text{H,F}} = 10.1,$ ${}^{3}J_{\text{F,F}}$ = 4.9 Hz, 2F). GC/MS: *m*/*z* (rel int, ion) 246 (50, M⁺), 231 (98, $[M - CH_3]^+$), 127 (20, SF₅⁺), 119 (85, $[M-SF_5]^+$). APCI MS: m/z (rel abund, ion) [FTMS⁻] calcd 126.9641, found 126.9642 (30, SF₅⁻), calcd 247.0033, found 247.0034 (10, $C_5H_6F_7OS^-)\text{, calcd 267.0095,}$ found 267.0094 (5, C₅H₇F₈OS⁻)

(E)-1,1-Difluoro-1-(pentafluoro- λ^{6} -sulfanyl)dodec-2-en-4-one (11g). Compound 10g (190 mg, 0.52 mmol) was treated with P₂O₅ (594 mg, 2.10 mmol) in DCM (4 mL). After 3 h, the reaction mixture was filtered and purified by column chromatography (pentane) to give 11g as a yellow oil. Yield: 130 mg (72%).

Note: It is very important to control the progress of the reaction and to quench after complete consumption of aldol **10g** to avoid decomposition of **11g** caused by the hydroxyl tautomer. ¹H NMR (300 MHz, CDCl₃): δ 6.83–6.53 (m, 2H), 2.64 (t, ³*J*_{H,H} = 7.3 Hz, 2H), 1.65 (quint, ³*J*_{H,H} = 7.2 Hz, 2H), 1.33–1.23 (m, 10H), 0.87 (t, ³*J*_{H,H} = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 197.5, 134.8 (t, ³*J*_{C,F} = 7.3 Hz), 129.5 (t, ²*J*_{C,F} = 22.6 Hz), 42.2, 31.7, 29.2, 29.0, 29.0, 23.4, 22.6, 14.0, the CF₂ group was not recorded. ¹⁹F NMR (282 MHz, CDCl₃): δ 67.83 (quintm, ²*J*_{F,F} = 145.1 Hz, 1F), 38.71 (dt, ²*J*_{F,F} = 145.1, ³*J*_{F,F} = 14.2 Hz, 4F), -83.21 (quintdd, ³*J*_{F,F} = 14.4, ³*J*_{H,F} = 10.6, ³*J*_{F,F} = 4.9 Hz, 2F). ESI MS (C₁₂H₁₉F₇OSH): calcd 345.1123, found 345.1118.

(E)-1,1,1-Trifluorododec-2-en-4-one (11g'). Compound 11g' was prepared in order to ensure its formation during synthesis of 11g.

Compound 12g (15 mg, 0.06 mmol) was oxidized with Dess– Martin periodinane (32 mg, 0.08 mmol) in DCM (1 mL). After completion of the reaction, silica was poured into the reaction vessel, solvents were removed under reduced pressure, and the material was further worked up by column chromatography (pentane → pentane/ Et₂O, 90:10). Yield: 13 mg (87%), colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 6.72 (dq, ³J_{H,H} = 15.9, ⁴J_{H,F} = 1.6 Hz, 1H), 6.59 (dq, ³J_{H,H} = 15.9, ⁴J_{H,F} = 1.4 Hz, 1H), 2.61 (t, ³J_{H,H} = 7.3 Hz, 2H), 1.71−1.55 (m, 2H), 1.36−1.21 (m, 10H), 0.87 (t, ³J_{H,H} = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 198.2, 134.1 (q, ³J_{C,F} = 5.5 Hz), 128.3 (q, ²J_{C,F} = 35.2 Hz), 122.4 (q, ¹J_{C,F} = 270.2 Hz), 41.9, 31.8, 29.3, 29.1, 29.0, 23.5, 22.6, 14.1. ¹⁹F NMR (282 MHz, CDCl₃): δ −65.2 (dd, ³J_{H,F} = 6.1, ⁴J_{H,F} = 1.6 Hz, 2F). ESI MS (C₁₂H₁₉F₃ONa): calcd 259.1286, found 259.1279.

(E)-1,1,1-Trifluorododec-2-en-4-ol (**12g**). Compound **11g** (65 mg, 0.19 mmol) was treated with CeCl₃·7H₂O (70 mg, 0.19 mmol) and NaBH₄ (4 mg, 0.11 mmol) in MeOH (2 mL) at 0 °C, 15 min. The reaction was quenched with water and extracted with DCM (2 × 10 mL), and the combined organic phases were washed with brine (20 mL), dried over MgSO₄, and concentrated. Column chromatography (pentane/Et₂O, 10:1) gave **12g** as a colorless oil. Yield: 35 mg (78%).

To an ice-cooled solution of **11g** (30 mg, 0.09 mmol) in Et₂O (2 mL) was added dropwise a Et₂O (1 mL) suspension of LAH (2 mg, 0.05 mmol, 0.6 equiv) at 0 °C. After 10 min, the reaction was quenched with water (5 mL) and extracted with DCM (3×5 mL). The combined organic phases were concentrated to give a mixture of **12g**, **13g** (5:1). Yield: 15 mg (around 58% combined).

To a solution of **11g** (24 mg, 0.07 mmol) in MeOH/HCl 10:1 (1 mL) was added NaCNBH₃ (4 mg, 0.07 mmol). After 1 h, the reaction was quenched with water (5 mL) and extracted with DCM (3×5 mL). The combined organic phases were dried over MgSO₄ and concentrated. Yield (¹⁹F NMR spectroscopy): **12g** (23%), **13g** (4%).

A solution of **11g** (17 mg, 0.05 mmol) and Al(*i*PrO)₃ (21 mg, 0.1 mmol) was refluxed in *i*PrOH (1 mL). After filtration, the mixture was concentrated and analyzed by NMR spectroscopy. Compounds **12g** and **11g**' were formed as a 1:1 mixture in 10% combined yield. This indicates that (i) formation of the CF₃ group occurred, (ii) the ketone formed was reduced to the allylic alcohol, and (iii) the reaction was not rerun to reach complete reduction. ¹H NMR (300 MHz, CDCl₃): δ 6.41 (ddq, ³*J*_{H,H} = 15.7, ³*J*_{H,H} = 4.2, ⁴*J*_{H,F} = 2.1 Hz, 1H), 5.89 (dqd, ³*J*_{H,H} trans = 15.7, ³*J*_{H,F} = 6.5, ⁴*J*_{H,H} = 1.7 Hz, 1H), 4.28 (tdq, ³*J*_{H,H} = 7.1, ³*J*_{H,H} = 4.2, ⁵*J*_{H,F} = 2.3 Hz, 1H), 1.59–1.53 (m, 2H), 1.28 (m, 12H), 0.87 (t, ³*J*_{H,H} = 7.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 142.4 (q, ³*J*_{C,F} = 6.0 Hz), 123.4 (q, ¹*J*_{C,F} = 269.2 Hz), 117.6 (q, ²*J*_{C,F} = 33.9 Hz), 70.4, 36.6, 31.8, 29.4, 29.4, 29.2, 25.1, 22.6, 14.1. ¹⁹F NMR (282 MHz, CDCl₃): δ -64.0 (dt, ³*J*_{H,F} = 6.5, ⁴*J*_{H,F} = 2.2, ⁵*J*_{H,F} = 2.2 Hz, 3F). ESI MS (C₁₂H₂₁F₃ONa): calcd 261.1442, found 261.1437.

1,1-Difluorododec-1-en-4-ol (13g). To an ice-cooled solution of 11g (47 mg, 0.14 mmol) in THF (2 mL) was added dropwise a THF (1 mL) suspension of LAH (26 mg, 0.68 mmol, 5 equiv) at 0 °C. After 10 min, the reaction was quenched with water (5 mL) and extracted with DCM (3 \times 5 mL). The combined organic phases were concentrated, and the crude product was purified by column chromatography (pentane/Et₂O, 10:1) to give 13g as a colorless oil. Yield: 22 mg (75%).

To an ice-cooled solution of **22** (13 mg, 0.05 mmol) in THF (1 mL) was added dropwise a THF (0.5 mL) suspension of LAH (9 mg, 0.25 mmol, 5 equiv) at 0 °C. After 10 min, the reaction was quenched with water (5 mL) and extracted with DCM (3 × 5 mL). The combined organic phases were concentrated to give **13g**. Yield: 10 mg (90%). ¹H NMR (300 MHz, CDCl₃): δ 4.25 (dtd, ³*J*_{H,F trans = 25.4, ³*J*_{H,H} = 8.0, ³*J*_{H,F cis} = 2.5 Hz, 1H), 3.70–3.56 (m, 1H), 2.25–2.03 (m, 2H), 1.53 (bs, 1H), 1.49–1.43 (m, 2H), 1.35–1.21 (m, 12H), 0.88 (t, ³*J*_{H,H} = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 74.4 (dd, ²*J*_{C,F} = 23.2, ²*J*_{C,F} = 20.6 Hz), 71.1 (t, ⁴*J*_{C,F} = 2.4 Hz), 36.7, 31.8, 30.3 (d, ³*J*_{C,F} = 4.2 Hz), 29.6, 29.5, 29.2, 25.6, 22.7, 14.1. The CF₂==CH– group was not recorded. ¹⁹F NMR (282 MHz, CDCl₃): δ -87.22 (dq, ²*J*_{F,F} = 45.2, ³*J*_{H,F cis} = ⁴*J*_{H,F} = 1.9 Hz, 1F), -90.35 (ddt, ²*J*_{F,F} = 45.1, ³*J*_{H,F trans = 25.4, ⁴*J*_{H,F} = 2.0 Hz, 1F). ESI MS (C₁₂H₂₂F₂ONa): calcd 243.1536, found 243.1530.}}

Synthesis and Reduction of the SF₅CH₂- and ClCF₂-Substituted Analogues 17 and 22. 4-Methoxy-1-(pentafluoro- λ^6 -sulfanyl)pent-3-en-2-one (14). According to the already used procedure: SF₅CH₂C(O)OH (309 mg, 1.17 mmol), oxalyl chloride (225 μ L, 2.65 mmol), methoxy propene (191 mg, 2.65 mmol), pyridine (210 μ L, 2.65 mmol). Yield: 225 mg (56%) of 14 as a yellow oil after column chromatography (Et₂O/pentane, 10:1). ¹H NMR (300 MHz, CDCl₃): δ 5.57 (s, 1H), 4.28 (quint, ³J_{H,F} = 8.2 Hz, 2H), 3.70 (s, 3H), 2.30 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 184.5 (quint, ³J_{C,F} = 3.5 Hz), 177.6, 99.1 (quint, ⁴J_{C,F} = 2.5 Hz, 78.4 (quint, ²J_{C,F} = 11.2 Hz), 56.1, 20.5. ¹⁹F NMR (282 MHz, CDCl₃): δ 82.23 (nonet, ²J_{F,F} = 149.0 Hz, 1F), 71.61 (dtt, ²J_{F,F} = 149.0, ³J_{H,F} = 8.1, J = 3.8 Hz, 4F). ESI MS (C₆H₉F₅O₂SNa): calcd 263.0141, found 263.0136.

4-Hydroxy-5-(pentafluoro-λ⁶-sulfanyl)pentan-2-one (**16**). Compound **14** (871 mg, 3.63 mmol) was treated with NaBH₄ (206 mg, 5.44 mmol) in MeOH (25 mL) at 0 °C for 4 h. The reaction mixture was quenched with water and extracted with DCM (3 × 70 mL), and the DCM extracts were dried over MgSO₄, and concentrated. The resulting hydroxyl enol ether **15** was subsequently hydrolyzed by treatment with a 1:3 2 M HCl/acetone mixture (50 mL) overnight. Column chromatography (pentane/Et₂O, 1:2) afforded **16** as a colorless oil. Yield: 750 mg (90% over two steps). ¹H NMR (300 MHz, CDCl₃): δ 4.66 (tt, ³*J*_{H,H} = 11.7, ³*J*_{H,H} = 6.0 Hz, 1H), AB spin system: 3.79 (m, 2H, H1 and 3.71 (m, 1H), 3.19 (bs, 1H), 2.72 (d, ³*J*_{H,H} = 5.8 Hz, 2H), 2.21 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 84.32 (nonet, ²*J*_{F,F} = 148.2 Hz, 1F), 66.91 (dtd, ²*J*_{F,F} = 148.2, ³*J*_{H,F} = 8.36, ⁴*J*_{H,F} = 4.18 Hz, 4F). ESI MS (C₅H₉F₅O₂SNa): calcd 251.0141, found 251.0136.

(*E*)-5-(*Pentafluoro*-λ⁶-sulfanyl)pent-3-en-2-one (17). Compound 16 (48 mg, 0.21 mmol) was treated with MsCl (31 mg, 0.27 mmol) and TEA (55 mg, 0.54 mmol) in DCM (4 mL) for 1 h at 0 °C, silica was poured into the reaction flask, and 17 was obtained as a colorless oil after column chromatography (pentane/Et₂O, 4:1). Yield: 36 mg (81%). ¹H NMR (400 MHz, CDCl₃): δ 6.81 (dt, ³J_{H,H} = 15.6, ³J_{H,H} = 7.7 Hz, 1H), 6.29 (dt, ³J_{H,H} = 15.8, ⁴J_{H,H} = 1.3 Hz, 1H), 4.41 (h, ³J_{H,F} = ³J_{H,H} = 7.3 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 197.1, 136.8, 133.3 (quint, ³J_{C,F} = 4.5 Hz), 72.0 (quint, ²J_{C,F} = 16.5 Hz), 27.7. ¹⁹F NMR (282 MHz, CDCl₃): δ 80.96 (nonet, ²J_{F,F} = 145.8 Hz, 1F), 66.26 (dtd, ²J_{F,F} = 145.8, ³J_{H,F} = 7.3, J = 2.4 Hz, 4F). ESI MS (C₅H₇F₅OSNa): calcd 233.0035, found 233.0030.

(*E*)-*5*-(*Pentafluoro-λ*⁶-sulfanyl)pent-3-en-2-ol (18). A solution of NaBH₄ (2 mg, 0.06 mmol) in MeOH (1 mL) was added to a MeOH (2 mL) solution of 17 (22 mg, 0.10 mmol) and CeCl₃·7H₂O (38 mg, 0.10 mmol) at 0 °C. After 15 min, the reaction was quenched with water (6 mL) and extracted with DCM (3 × 6 mL). The combined organic phases were washed with brine (15 mL), dried over Na₂SO₄, and concentrated to give **5b** as a colorless oil. Yield: 20 mg (90%). ¹H NMR (300 MHz, CDCl₃): δ 5.97–5.81 (m, 2H), 4.39 (qt, ³*J*_{H,H} = 6.4, *J*_{H,H} = 3.8 Hz, 1H), 4.28 (h, ³*J*_{H,F} = ³*J*_{H,H} = 7.4 Hz, 2H), 1.66 (bs, 1H), 1.31 (d, ³*J*_{H,H} = 6.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 143.6, 118.7 (quint, ³*J*_{C,F} = 3.9 Hz), 73.3 (quint, ²*J*_{C,F} = 14.7 Hz), 67.6, 22.9.

¹⁹F NMR (282 MHz, CDCl₃): δ 82.06 (nonet, ${}^{2}J_{F,F}$ = 144.6 Hz, 1F), 63.61 (dtd, ${}^{2}J_{F,F}$ = 144.6, ${}^{3}J_{H,F}$ = 7.7, J = 3.9 Hz, 4F). ESI MS (C₅H₉F₅OSNa): calcd 235.0192, found 235.0186.

(Z)-1-Chloro-1,1-difluoro-4-methoxydodec-3-en-2-one (19). According to the previously used procedure, ClCF₂C(O)OH (500 mg, 3.85 mmol), oxalyl chloride (488 μ L, 5.77 mmol), the methyl vinyl ether 1g¹ (900 mg, 5.40 mmol), and pyridine (850 μ L, 6.15 mmol) gave 19 as a yellow oil after column chromatography (pentane). Yield: 578 mg (53%). ¹H NMR (400 MHz, CDCl₃): δ 5.61 (t, ⁴J_{H,F} = 1.1 Hz, 1H), 3.77 (s, 3H), 2.79–2.74 (m, 2H), 1.53 (quint, ³J_{H,H} = 7.3 Hz, 2H) 1.31–1.23 (m, 10H), 0.85 (t, ³J_{H,H} = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 185.4, 179.7 (t, ²J_{C,F} = 27.4 Hz), 120.9 (t, ¹J_{C,F} = 306.4 Hz), 90.1, 56.5, 33.9, 31.9, 29.5, 29.3, 29.3, 27.1, 22.7, 14.2. ¹⁹F NMR (282 MHz, CDCl₃): δ -66.6 (d, ⁴J_{H,F} = 1.1 Hz, 2F). ESI MS (C₁₃H₂₁F₂O₂Cl)₂Na] calcd 587.2288, found 587.2294.

1-*Chloro-1,1-difluoro-2-hydroxydodecan-4-one* (**21**). Compound **19** (578 mg, 2.05 mmol) was treated with NaBH₄ (62 mg, 1.64 mmol) in MeOH (25 mL) at 0 °C for 15 min. The reaction mixture was quenched with water and extracted with Et₂O (3 × 40 mL), and the Et₂O extracts were dried over MgSO₄ and concentrated. The resulting hydroxyl enol ether **20** was subsequently hydrolyzed by treating with a 1:3 2 M HCl/acetone mixture (20 mL) overnight. Column chromatography (pentane/Et₂O, 10:1) afforded **21** as a colorless oil. Yield: 292 mg (53% over two steps). ¹H NMR (300 MHz, CDCl₃): δ 4.53 (td, ³*J*_{H,F} = 7.8, ³*J*_{H,H} = 4.3 Hz, 1H), 3.43 (bs, 1H), 2.85 (d, ²*J*_{H,H} = 9.0, ³*J*_{H,H} = 4.2 Hz, 1H), 2.78 (dd, ²*J*_{H,H} = 9.0, ³*J*_{H,H} = 4.2 Hz, 1H'), 2.48 (t, ³*J*_{H,H} = 7.4 Hz, 2H), 1.58 (quint, ³*J*_{H,H} = 7.3 Hz, 2H), 1.32– 1.22 (m, 10H), 0.87 (t, ³*J*_{H,H} = 6.6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 208.9, 129.1 (t, ¹*J*_{C,F} = 295.3 Hz), 71.4 (t, ²*J*_{C,F} = 27.9 Hz), 43.9, 42.7, 31.9, 29.4, 29.2, 29.1, 23.5, 22.7, 14.2. ¹⁹F NMR (282 MHz, CDCl₃): δ AB spin system: *J*_{AB} = 165 Hz: -64.0 (dd, ³*J*_{H,F} = 8.0, ⁴*J*_{H,F} = 2.0 Hz) and -65.7 (dt, ³*J*_{H,F} = 8.0, ⁴*J*_{H,F} = 1.8 Hz, 2F). ESI MS (C₁₂H₂₁ClF₂O₂Na): calcd 293.1096, found 293.1090.

(E)-1-Chloro-1,1-difluorododec-2-en-4-one (22). Compound 21 (240 mg, 0.89 mmol) was treated with MsCl (122 mg, 1.07 mmol) and TEA (260 mg, 2.56 mmol) in DCM (10 mL) for 1 h at 0 °C. Silica was poured into the reaction mixture. After drying, this material was applied on a short pad of silica and filtered with pentane/Et₂O (10:1) to give 22 as a yellowish oil. Yield: 189 mg (84%). ¹H NMR (300 MHz, CDCl₃): δ 6.74 (dt, ³J_{H,H} = 15.7, ³J_{H,F} = 8.8 Hz, 1H), 6.58 (dt, ³J_{H,H} = 7.1 Hz, 2H), 1.31–1.23 (m, 10H), 0.86 (t, ³J_{H,H} = 6.7 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 197.5, 133.0 (t, ²J_{C,F} = 28.4 Hz), 129.9 (t, ³J_{C,F} = 5.6 Hz), 123.1 (t, ¹J_{C,F} = 287.6 Hz), 41.1, 30.9, 28.4, 28.2, 28.1, 22.6, 21.7, 13.1. ¹⁹F NMR (282 MHz, CDCl₃): δ -53.5 (dt, ³J_{H,F} = 8.9, ⁴J_{H,F} = 1.4 Hz, 2F). ESI MS (C₁₂H₁₉ClF₂ONa): calcd 275.0990, found 275.0985.

(E)-1-Chloro-1,1-difluorododec-2-en-4-ol (23). A solution of NaBH₄ (12 mg, 0.31 mmol) in MeOH (3 mL) was added to a solution of 22 (78 mg, 0.31 mmol) and CeCl₃·7H₂O (115 mg, 0.31 mmol) in MeOH (2 mL) at 0 °C. After 15 min, the reaction was quenched with water (6 mL) and extracted with DCM (3×6 mL). The combined organic phases were washed with brine (15 mL), dried over Na2SO4, and concentrated to give 23 as colorless oil. Yield: 64 mg (81%). ¹H NMR (300 MHz, CDCl₃): δ 6.29 (ddt, ³J_{H,H} = 15.5, ³J_{H,H} = (a), ${}^{4}J_{H,F} = 2.0 \text{ Hz}, 1\text{H}$), 6.04 (dtd, ${}^{3}J_{H,H} = 15.5, {}^{3}J_{H,F} = 9.0, {}^{3}J_{H,H} = 1.6 \text{ Hz}, 1\text{H}$), 4.25 (tdd, ${}^{3}J_{H,H} = 8.8, {}^{3}J_{H,H} = 4.3, {}^{4}J_{H,H} = 2.1 \text{ Hz}, 1\text{H}$), 2.10 (bs, 1H), 1.59–1.51 (m, 2H), 1.35–1.23 (m, 12H), 0.88 (t, {}^{3}J_{H,H} = 6.8 \text{ Hz}) Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 139.6 (t, ³J_{C,F} = 6.4 Hz), 125.1 (${}^{1}J_{C,F}$ = 286.5 Hz), 123.9 (t, ${}^{2}J_{C,F}$ = 27.1 Hz), 70.4, 36.8 (t, ${}^{5}J_{C,F}$ = 1.4 Hz), 31.9, 29.6, 29.5, 29.3, 25.3, 22.7, 14.2. ¹⁹F NMR (282 MHz, CDCl₃): δ -50.0 (dm, ${}^{3}J_{H,F}$ = 9.0, 2F). GC/MS: m/z (rel int, ion): 254 (1, M⁺), 237 (3, [M-OH]⁺), 211 (3, [M-Pr]⁺), 169 (70, [M- $CF_2Cl]^+$), 143 (20, $C_9H_{19}O^+$), 141 (65, $[M-C_8H_{17}]^+$), 43 (90, Pr^+). APCI MS: m/z (rel abund, ion): [FTMS⁺] calcd 271.1271, found 271.1266 (20, C12H21OClF2OH+), [FTMS-] calcd 289.0943, found 289.0915 (100, $C_{12}H_{21}OClF_2Cl^-$), calcd 305.0892, found 305.0863 $(100, C_{12}H_{21}OClF_2ClO^{-}).$

Synthesis and Reduction of the Bromide-Substituted Derivatives 27. 5-Bromo-1,1-difluoro-4-methoxy-1-(pentafluoro- λ^6 -sulfanyl)pent-3-en-2-one (24). Analogous to reference,¹⁸ a DCM solution (25 mL) of 2f (1043 mg, 3.78 mmol) was slowly treated with bromine (605 mg, 7.45 mmol) at 0 °C for 20 min. The reaction was quenched with solid Na₂S₂O₃ until the residual bromine had vanished. Then silica was poured into this mixture, solvents were evaporated, and this material was applied for column chromatography (pentane/ Et₂O, 10:1). Yield: 900 mg (67%) (contaminated with the hydrolysis product, ratio 4:1). Pale yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 5.81 (t, ${}^{4}J_{H,F}$ = 1.5 Hz, 1H), 4.42 (s, 2H), 3.89 (s, 3H). ${}^{13}C$ NMR (75 MHz, CDCl₃): δ 178.5 (t, ²J_{C,F} = 23.6 Hz), 176.7, 92.7, 57.4, 25.5. ¹⁹F NMR (282 MHz, CDCl₃): δ 67.44 (quintm, ²J_{F,F} = 146.4 Hz, 1F), 43.04 (dt, ${}^{2}J_{F,F} = 146.4$, ${}^{3}J_{F,F} = 12.4$ Hz, 4F), -92.48 (quintdd, ${}^{3}J_{F,F} = 12.4$, ${}^{3}J_{F,F} = 4.5$, ${}^{4}J_{H,F} = 1.5$ Hz, 2F). ESI MS (C₆H₆BrF₇SO₂Na): calcd 376.9058, found 376.9052, calcd 378.9037, found 378.9032 (calcd for ⁷⁹Br and ⁸¹Br, respectively).

1-Bromo-5,5-difluoro-4-hydroxy-5-(pentafluoro- λ^6 -sulfanyl)pentan-2-one (26). Compound 24 (860 mg, 2.43 mmol) was treated with NaBH₄ (74 mg, 1.94 mmol) in MeOH (20 mL) at 0 °C. After 5 min, the reaction was quenched with water (40 mL) and extracted with DCM (3 \times 50 mL). The crude material 25 was refluxed in an acetone/2 M HCl (3:1) mixture (12 mL) for 1 h. Then it was diluted with water (30 mL), extracted with DCM (3×30 mL), washed with brine (50 mL), and dried over MgSO₄. Column chromatography (pentane/Et₂O, 2:1) gave 26 as a white solid. Yield: 510 mg (61%). Mp: 61–62 °C. ¹H NMR (400 MHz, CDCl₃): δ 4.87 (tt, ³ $J_{H,F}$ = 10.9, ${}^{3}J_{H,H}^{1} = 5.2$ Hz, 1H), 4.18 (d, 2H, ${}^{4}J_{H,H} = 1.4$ Hz), 3.34 (d, ${}^{3}J_{H,H} = 6.2$ Hz, 1H), 3.15 (dd, ${}^{2}J_{H,H} = 17.8$, ${}^{3}J_{H,H} = 9.3$ Hz, 1H), 3.00 (dt, ${}^{2}J_{H,H} = 17.8$, ${}^{3}J_{H,H} = 2.3$ Hz, 1H). ${}^{13}C$ NMR (101 MHz, CDCl₃): δ 199.9, 128.7 (tquint, ${}^{1}J_{C,F} = 301.9$, ${}^{2}J_{C,F} = 20.5$ Hz), 68.0 (dd, ${}^{2}J_{C,F} = 25.3$, ${}^{2}J_{C,F} = 21.0$ Hz), 48.5, 40.4 (dd, ${}^{3}J_{C,F} = 2.9$, ${}^{3}J_{C,F} = 1.5$ Hz). 19 F NMR (282 MHz, CDCl₃): δ 69.37 (quintm, ² $J_{F,F}$ = 145.6 Hz, 1F), 40.64 (dt, ${}^{2}J_{F,F} = 145.6$, ${}^{3}J_{F,F} = 15.5$ Hz, 4F), AB spin system, $J_{AB} = 192$ Hz, -88.78 (quint, ${}^{3}J_{F,F} = 15.5$ Hz, 1F) and -94.63 (quint, ${}^{3}J_{F,F} = 15.5$ Hz, 1F). ESI MS (C₅H₆BrF₇SO₂Na): calcd 364.9058, found 364.9054, calcd 366.9037, found 366.9032, for ⁷⁹Br and ⁸¹Br, respectively.

(*E*)-1-Bromo-5,5-difluoro-5-(pentafluoro- λ^6 -sulfanyl)pent-3-en-2one (27). Compound 26 (220 mg, 0.64 mmol) was added to a suspension of P₂O₅ (916 mg, 6.45 mmol) in dry CH₂Cl₂ (20 mL). The resulting mixture was stirred for 2 days at room temperature. Next it was filtered, concentrated, and filtered through a short pad of silica. Yield: 120 mg (57%, contaminated with the CF₃ analogue 27' in the ratio of 18:1), colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.08 (dt, ³J_{H,H} = 15.7, ⁴J_{H,F} = 1.7 Hz, 1H), 6.94 (dddquint, ³J_{H,H} = 15.3, ³J_{H,F} = 13.3, ³J_{H,F} = 11.6, ⁴J_{H,F} = 1.6 Hz, 1H), 4.26 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 189.2, 132.6 (t, ²J_{C,F} = 23.0 Hz), 131.0 (t, ³J_{C,F} = 7.6 Hz), 125.9 (tquint, ¹J_{C,F} = 295.2, ²J_{C,F} = 26.7 Hz), 47.4. ¹⁹F NMR (282 MHz, CDCl₃): δ 67.42 (quintm, ²J_{F,F} = 145.3 Hz, 1F), 39.12 (dt, ²J_{F,F} = 145.3, ³J_{F,F} = 14.2 Hz, 4F), -83.70 (quint, ³J_{F,F} = 14.1 Hz, 2F). APCI MS: *m*/*z* (rel abund, ion) [FTMS⁻] calcd 126.9646, found 126.9644 (100, SF₅⁻).

(E)-1-Bromo-5,5-difluoro-5-(pentafluoro-λ⁶-sulfanyl)pent-3-en-2ol (28). To compound 27 (25 mg, 0.08 mmol) in methanol (1.5 mL) was added CeCl₃·7H₂O (28 mg, 0.08 mmol). Then the mixture was cooled to 0 °C, and a methanol (1 mL) solution of NaBH₄ (3 mg, 0.08 mmol) was added dropwise. After 5 min, the reaction was quenched with 0.5 M HCl (3 mL) and extracted with CH_2Cl_2 (3 × 6 mL), and the DCM extracts were washed with brine (15 mL) and dried over MgSO₄. Yield: 15 mg (60%, contaminated with the CF_3 analogue 27' in the ratio of 12:1). Colorless oil. ¹H NMR (400 MHz, $CDCl_3$): δ 6.48 (ddt, ${}^{3}J_{H,H} = 15.6$, ${}^{3}J_{H,H} = 3.9$, ${}^{4}J_{H,F} = 2.0$ Hz, 1H), 6.23 (dtquint, ${}^{3}J_{H,H} = 15.5$, ${}^{3}J_{H,F} = 12.0$, ${}^{4}J_{H,H} = 1.8$ Hz, 1H), 4.59 (s, 1H), 3.72 (dd, ${}^{2}J_{\rm H,H} = 11.3$, ${}^{3}J_{\rm H,H} = 4.0$ Hz, 1H), 3.56 (dd, ${}^{2}J_{\rm H,H} = 11.3$, ${}^{3}J_{\rm H,H} = 6.7$ Hz, 1H), 2.50 (d, ${}^{3}\!J_{\rm H,H}$ = 5.4 Hz, 1H). 13 C NMR (101 MHz, CDCl₃): δ 139.3 (t, ${}^{3}J_{C,F} = 8.5$ Hz), 127.0 (tm, ${}^{1}J_{CF} = 294.0$ Hz), 121.8 (t, ${}^{2}J_{C,F} =$ 21.6 Hz), 70.0, 48.3. $\rm CF_2$ was not detected. $^{19}\rm F$ NMR (282 MHz, CDCl₃): δ 68.44 (quintm, ²*J*_{F,F} = 145.5 Hz, 1F), 39.19 (dt, ²*J*_{F,F} = 145.5, ${}^{3}J_{F,F} = 15.2 \text{ Hz}, 4\text{F}$, -82.00 - -82.35 (m, 2F). APCI MS: m/z

(rel abund, ion): [FTMS⁻] calcd 126.9646, found 126.9642 (100, $\mathrm{SF_s^-}).$

SF₅⁻). 5-Bromo-1,1-difluoro-4-methoxy-1-(pentafluoro-λ⁶-sulfanyl)dodec-3-en-2-one (**24b**). Compound **2g** (560 mg, 1.50 mmol) was treated with bromine (240 mg, 3.00 mmol) in dry DCM (10 mL). After 30 min, the reaction was quenched with solid Na₂S₂O₃ until the residual bromine had vanished. Then silica was poured into this mixture, solvents were evaporated, and this material was applied for column chromatography (pentane/Et₂O, 4:1). Yield: 615 mg, (91%). ¹H NMR (400 MHz, CDCl₃): 5.81 (t, ³J_{H,H} = 7.6 Hz, 1H), 5.72 (t, ⁴J_{H,F} = 1.6 Hz, 1H), 3.89 (s, 3H), 1.99 (q, ³J_{H,H} = 6.2 Hz, 2H), 1.34– 1.21 (m, 10H), 0.88 (t, ³J_{H,H} = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): 179.0, 178.8 (t, ²J_{C,F} = 23.2 Hz), 120.7 (tm, ¹J_{C,F} = 312 Hz), 91.6, 57.4, 45.0, 34.8, 31.7, 29.0, 28.9, 27.4, 22.7, 14.1. ¹⁹F NMR (282 MHz, CDCl₃): δ 67.50 (quintm, ²J_{F,F} = 146.4 Hz, 1F), 42.98 (dt, ²J_{F,F} = 146.4, ³J_{F,F} = 1.2.4 Hz, 4F), -92.36 (quintdd, ³J_{F,F} = 12.4, ³J_{F,F} = 4.5, ⁴J_{H,F} = 1.6 Hz, 2F). ESI MS (C₁₃H₂₀BrF₇SO₂Na): calcd 475.0153, found 475.0147, calcd 477.0133, found 477.0127 for ⁷⁹Br and ⁸¹Br, respectively.

5-Bromo-1,1-difluoro-2-hydroxy-1-(pentafluoro- λ^6 -sulfanyl)dodecan-4-one (26b). Compound 24 (220 mg, 0.49 mg) was treated with NaBH₄ (18 mg, 0.49 mmol) in MeOH (6 mL) at 0 °C. After 5 min, the reaction was quenched with water (15 mL) and extracted with DCM (3 \times 15 mL). The crude material 26 was dissolved in acetone/2 M HCl (3:1) mixture (4 mL) for 1 h. Then it was diluted with water (10 mL), extracted with DCM (3×15 mL), washed with brine (30 mL), and dried over MgSO₄. Yield: 52 mg (52%) of 26 (with large excess of one diastereoisomer). ¹H NMR (300 MHz, $CDCl_3$): δ 4.85 (tdd, ${}^{3}J_{H,F}$ = 16.1, ${}^{3}J_{H,H}$ = 8.5, ${}^{3}J_{H,H}$ = 4.2 Hz, 1H), 4.25 (td, J = 8.5, 5.6 Hz, 1H), AB spin system: 3.22 (dd, ${}^{2}J_{H,H} = 18.0$, ${}^{3}J_{H,H}$ = 9.3 Hz, 1H) and 3.12-3.00 (m, 1H), 2.06-1.77 (m, 2H), 1.34-1.22 (m, 10H), 0.88 (t, ${}^{3}J_{H,H}$ = 6.7 Hz, 3H). ${}^{13}C$ NMR (75 MHz, CDCl₃): 202.7, 68.5–67.8 (m), 63.9, 39.4, 33.7, 31.6, 28.9, 28.8, 25.9, 22.6, 14.0. CF₂ was not detected. ${}^{19}F$ NMR (282 MHz, CDCl₃): δ 69.56 (quintm, ${}^{2}J_{F,F}$ = 145.6 Hz, 1F), 40.60 (dm, ${}^{2}J_{F,F}$ = 145.6 Hz, 4F), AB spin system, $J_{AB} = 191$ Hz, -88.61 (m, 1F) and -94.63 (bs, 1F). ESI $\begin{array}{l} \text{MS} \quad (C_{12}H_{20}\text{Br}F_7\text{SO}_2\text{Na}): \text{ calcd } 463.0148, \text{ found } 463.0151, \text{ calcd } 465.0127, \text{ found } 465.0130, \text{ for } ^{79}\text{Br and } ^{81}\text{Br, respectively.} \\ (E)-5-Bromo-1,1-difluoro-1-(pentafluoro-\lambda^6-sulfanyl)dodec-2-en-$

(E)-5-Bromo-1,1-difluoro-1-(pentafluoro- λ^6 -sulfanyl)dodec-2-en-4-one (27b) and (E)-5-Bromo-1,1,1-trifluorododec-2-en-4-one (27b'). Compound 26 (24 mg, 0.05 mmol) was added to a suspension of P₂O₅ in dry CH₂Cl₂ (5 mL). The resulting mixture was stirred overnight at room temperature. Next it was filtered, concentrated, and filtered through a short pad of silica. Yield: 10 mg (43%, 6:1 mixture with 27'). ¹H NMR (300 MHz, CDCl₃): δ 7.17 (dt, ³J_{H,H} = 15.7, ⁴J_{H,F} = 1.8 Hz, 1H), 7.04–6.83 (m, 1H), 4.36 (dd, ³J_{H,H} = 8.3, ³J_{H,H} = 5.9 Hz, 1H), 2.02–1.85 (m, 2H, AB spin system), 1.39–1.16 (m, 13H), 0.88 (t, ³J_{H,H} = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 191.1, 132.2 (t, ²J_{C,F} = 23.6 Hz), 131.0 (t, ³J_{C,F} = 8.7 Hz), 62.8, 33.1, 31.6, 28.9, 28.9, 25.9, 22.6, 14.0. CF₂ was not detected. ¹⁹F NMR (282 MHz, CDCl₃): δ 67.17 (quinttm, ²J_{E,F} = 145.3, ³J_{F,F} = 4.9 Hz, 1F), 39.05 (dt, ²J_{F,F} = 145.3, ³J_{F,F} = 4.7 Hz, 2F). APCI MS: *m*/z (rel abund, ion) [FTMS⁻] calcd 126.9646, found 126.9639 (28, SF₅⁻).

(*E*)-5-*B*romo-1,1-*d*ifluoro-1-(pentafluoro-λ⁶-sulfanyl)dodec-2-en-4-ol (**28b**) and (*E*)-5-*B*romo-1,1,1-trifluorododec-2-en-4-ol (**28b**'). To the 6:1 mixture of **27** and **27**' (10 mg, 0.02 mmol) in methanol (1 mL) was added CeCl₃·7H₂O (9 mg, 0.02 mmol). Then the mixture was cooled to 0 °C, and a methanol (1 mL) solution of NaBH₄ was added dropwise. After 5 min, the reaction was quenched with 0.5 M HCl (3 mL) and extracted with CH₂Cl₂ (3 × 5 mL), and the DCM extracts were washed with brine (10 mL) and dried over MgSO₄. Yield: 9 mg (89%, 5:1 mixture with **28**'). ¹H NMR (300 MHz, CDCl₃): δ 6.52 (ddt, ³J_{H,H} = 15.7, ³J_{H,H} = 3.8, ⁴J_{H,F} = 1.9 Hz, 1H), 6.21-6.12 (m, 1H), 4.44 (dh, ³J_{H,H} = 4.4, J = 2.3 Hz, 1H), 3.96 (ddt, J = 9.0, 7.4, ³J_{H,H} = 4.5 Hz, 1H), 2.29 (s, 1H), 1.87-1.74 (m, 2H, AB spin system), 1.33-1.25 (m, 10H), 0.85 (t, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 140.6 (t, ³J_{C,F} = 8.6 Hz), 121.5 (t, ²J_{C,F} = 22.1 Hz), 72.8, 66.6, 34.3, 31.8, 29.1, 29.0, 26.6, 22.7, 14.2. CF₂ was not detected. ¹⁹F NMR (282 MHz, CDCl₃): δ 6.90.5 (quintm, ²J_{F,F} = 144.5, 1F), 37.66 (dt, ${}^{2}J_{F,F} = 144.5$, ${}^{3}J_{F,F} = 15.1$ Hz, 4F), -81.51 (quintd, ${}^{3}J_{F,F} = 15.6$, ${}^{3}J_{F,F} = 5.4$ Hz, 2F). APCI MS: m/z (rel abund, ion): [FTMS⁻] calcd 78.9183, found 78.9188 (10, Br⁻), calcd 126.9646, found 126.9648 (100, SF₅⁻); [FTMS⁺] calcd 345.1123, found 345.1116 (30, C₁₂H₂₀F₇OS⁺).

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b00550.

¹H, ¹³C, and ¹⁹F NMR spectra for all new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: haufe@uni-muenster.de.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Deutsche Forschungsgemeinschaft (DFG) (Ha 2145/12-1, AOBJ 588585) and the U.S. National Science Foundation (NSF) (CHE-1124859) for financial support. We are also grateful to the NMR group of Organisch-Chemisches Institut for their excellent service. P.D. is thankful to the International Graduate School of Chemistry, University of Münster, for support.

REFERENCES

(1) Recent reviews: (a) Altomonte, S.; Zanda, M. J. Fluorine Chem. 2012, 143, 57. (b) Savoie, P. R.; Welch, J. T. Chem. Rev. 2015, 115, 1130.

(2) Most recent publications include: (a) Falkowska, E.; Tognetti, V.; Joubert, L.; Jubault, P.; Bouillon, J.-P.; Pannecoucke, X. RSC Adv. **2015**, 5, 6864. (b) Joliton, A.; Plancher, J.-M.; Carreira, E. M. Angew. Chem., Int. Ed. **2016**, 55, 2113. (c) Friese, F. W.; Dreier, A.-L.; Matsnev, A. V.; Daniliuc, C.-G.; Thrasher, J. S.; Haufe, G. Org. Lett. **2016**, 18, 1012.

(3) (a) Kirsch, P.; Binder, J. T.; Lork, E.; Röschenthaler, G.-V. J. Fluorine Chem. 2006, 127, 610. (b) Dolbier, W. R., Jr.; Zheng, Z. J. Org. Chem. 2009, 74, 5626. (c) Ponomarenko, M. V.; Lummer, K.; Fokin, A. A.; Serguchev, Y. A.; Bassil, B. S.; Röschenthaler, G.-V. Org. Biomol. Chem. 2013, 11, 8103.

(4) (a) Huang, Y.; Gard, G. L.; Shreeve, J. M. *Tetrahedron Lett.* 2010, *51*, 6951. (b) Dreier, A.-L.; Mück-Lichtenfeld, C.; Beutel, B.; Matsnev, A. V.; Thrasher, J. S; Haufe, G. Eur. J. Org. Chem. 2016, to be submitted.

(5) (a) Winter, R.; Gard, G. L. J. Fluorine Chem. 2000, 102, 79.
(b) Falkowska, E.; Laurent, M. Y.; Tognetti, V.; Joubert, L.; Jubault, P.; Bouillon, J.-P.; Pannecoucke, X. Tetrahedron 2015, 71, 8067. (c) Vida, N.; Václavík, J.; Beier, P. Beilstein J. Org. Chem. 2016, 12, 110.
(d) Bittner, J.; Fuchs, J.; Seppelt, K. Z. Anorg. Allg. Chem. 1988, 557, 182. (e) Clark, M.; Kellen-Yuen, C. J.; Robinson, K. D.; Zhang, H.; Fuller, J. W.; Atwood, J. L.; Thrasher, J. S. Eur. J. Solid State Inorg. Chem. 1992, 29, 809.

(6) Matsnev, A. V.; Qing, S.-Y.; Stanton, M. A.; Berger, K. A.; Haufe, G.; Thrasher, J. S. Org. Lett. 2014, 16, 2402.

(7) (a) Olah, G. A. *Friedel–Crafts and Related Reactions*; Wiley: New York, 1963. (b) Groves, J. K. *Chem. Soc. Rev.* **1972**, *1*, 73. (c) Armengol, E.; Corma, A.; Fernández, L.; García, H.; Primo, J. *Appl. Catal., A* **1997**, *158*, 323 and references cited therein.

(8) (a) Hojo, M.; Masuda, R.; Kokuryo, Y.; Shioda, H.; Matsuo, S. Chem. Lett. **1976**, 499. (b) Hojo, M.; Masuda, R.; Kamitori, Y. Tetrahedron Lett. **1976**, 17, 1009. (c) Hojo, M.; Masuda, R.; Okada, E. Tetrahedron Lett. **1986**, 27, 353. (d) Hojo, M.; Masuda, R.; Sakaguchi,

S.; Takagawa, M. Synthesis **1986**, 1016. (e) Hojo, M.; Masuda, R.; Kamitori, Y.; Okada, E. J. Org. Chem. **1991**, 56, 1975. (f) Moriguchi, T.; Endo, T.; Takata, T. J. Org. Chem. **1995**, 60, 3523.

(9) (a) Olah, G. A.; Germain, A.; Lin, H. C. J. Am. Chem. Soc. 1975, 97, 5481. (b) Olah, G. A.; Heiliger, L.; Prakash, G. K. S. J. Am. Chem. Soc. 1989, 111, 8020. (c) Chepik, S. D.; Belen'kii, G. G.; Cherstkov, V. F.; Sterlin, S. R.; German, L. S. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1991, 40, 446.

(10) (a) Nenajdenko, V. G.; Balenkova, E. S. *Russ. J. Org. Chem.* **1991**, 28, 488. (b) Nenajdenko, V. G.; Leshcheva, I. F.; Balenkova, E. S. *Tetrahedron* **1994**, 50, 775. (c) Nenajdenko, V. G.; Gridnev, I. D.; Balenkova, E. S. *Tetrahedron* **1994**, *50*, 11023.

(11) Trahanovsky, W. S.; Ong, C. C.; Pataky, J. G.; Weitl, F. L.; Mullen, P. W.; Clardy, J. C.; Hansen, R. S. J. Org. Chem. **1971**, 36, 3575.

(12) Dreier, A.-L.; Matsnev, A. V.; Thrasher, J. S.; Haufe, G. J. Fluorine Chem. 2014, 167, 84.

(13) (a) Plenkiewicz, H.; Dmowski, W.; Lipinski, M. J. Fluorine Chem. 2001, 111, 227. (b) Martinez, H.; Zheng, Z.; Dolbier, W. R., Jr. J. Fluorine Chem. 2012, 143, 112.

(14) For some anion-mediated, fluoride eliminations to form 1,1difluoromethylene species, see: Uneyama, K.; Katagiri, T.; Amii, H. *Acc. Chem. Res.* **2008**, *41*, 817.

(15) (a) Brel, V. K. Synthesis 2006, 339. (b) Brel, V. K. J. Fluorine Chem. 2007, 128, 862. (c) Husstedt, W. S.; Thrasher, J. S.; Haufe, G. Synlett 2011, 2011, 1683.

(16) Yamazaki, T.; Ichikawa, M.; Kawasaki-Takasuka, T.; Yamada, S. J. Fluorine Chem. **2013**, 155, 151.

(17) Bugera, M. Y.; Tarasenko, K. V.; Kukhar, V. P.; Röschenthaler, G.-V.; Gerus, I. I. *Synthesis* **2013**, *45*, 3157.

(18) Hudrlik, P. F.; Hudrlik, A. M. J. Org. Chem. 1973, 38, 4254.